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OCEN 689

Fall 2019

Homework 4, due Thu Nov 14

1. Low-Storage Runge–Kutta: Consider the ODE

dV

dt
= ηV,

where η is a coefficient, and V (0) = V0 is the initial condition.

(a) For large computations of practical use, Runge–Kutta methods known as low-
storage-Runge–Kutta (LSRK) are very often used. One example is given by the
following 3rd-order formula

V n+1 = V ∗∗ + 8k3/15,

where
k1 = δtηV n; V ∗ = V n + k1/3,

k2 = δtηV ∗ − 5k1/9; V ∗∗ = V ∗ + 15k2/16,

k3 = δtηV ∗∗ − 153k2/128,

Show why this scheme requires less storage than the regular 3rd-order Runge–Kutta:

V n+1 = V n +
1

6
(k1 + 4k2 + k3),

where
k1 = δtηV n; k2 = δtη(V n + k1/2); k3 = δtη(V n − k1 + 2k2).

Take V0 = 1, η = −1, t = [0, 20], and implement the LSRK3-scheme and compare
the relative errors of Euler and LSRK3 using the two time steps δt = 2.0 and
δt = 0.05 s.

(b) Now let’s consider the RK2 scheme we derived in class (or any RK2 scheme you
have to hand). Write down a single RK2 step for the equation

dV

dt
= iκV,

where κ is a real valued constant that represents the frequency of the oscillation
and i =

√
−1 is the imaginary number. Derive, from the expression that you have

just written, the amplification factor σ and |σ|2.



OCEN 689 Homework 4, Page 2 of 5 October 31, 2019

For the next two questions we will be using MATLAB’s ode45 function. It is MATLAB’s
standard solver for ordinary differential equations. The function implements a Runge–
Kutta method with a variable time step to solve

y′ = f(t, y), y′(t0) = y0, t ∈ [t0, tf ]

By calling [t,y]=ode45(odefun,tspan,y0);, where odefun is the function f(t, y),
tspan is a 2 element vector holding t0, tf , and y0 is the initial value. See MATLAB’s
documentation for further information.

2. Inverted pendulum: Consider the problem of simulating forced oscillations of an
inverted pendulum shown in the figure below:

The setup consists of a weightless rigid rod of length l that has a mass m attached to
its end. Attached to the mass is a spring with stiffness constant k and an unstretched
length of γl. The spring has length l when the pendulum is in the vertical position.
External moments acting on the system include a driving moment M(t), moment due to
the gravitational force, and a viscous damping moment cl2θ̇. The nonlinear second order
ODE governing the equation of motion of the system can be written using dimensionless
variables as follows:

d2θ

dτ 2
= −α

dθ

dτ
+ sin(θ) + P (τ)− β sin(θ)

(
1− γ

λ

)
, (1)
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where

τ = dimensionless time,

α =
c

m

√
l

g
, viscous damping factor,

β =
2k

m

(g
l

)
, spring stiffness factor,

λ =
√
5− 4 cos(θ),

γ = (unstretched spring length)/l,

P (τ) =
M(τ)

mgl
, dimensionless driving moment.

θexact(τ) = θ0 sin(ωτ) is an exact solution of the ODE satisfying initial conditions
θ(0) = 0, dθ

dτ
(0) = θ0ω, where θ0 and ω, are constants. For this solution, the corre-

sponding dimensionless driving moment P (τ) takes the following form:

P (τ) =
d2θexact
dτ 2

+ α
dθexact
dτ

− sin(θexact) + β sin(θexact)

[
1− γ√

5− 4 cos(θexact)

]
= −ω2θ0 sin(ωτ) + αωθ0 cos(ωτ)− sin (θ0 sin(ωτ))

+ β sin (θ0 sin(ωτ))

[
1− γ√

5− 4 cos (θ0 sin(ωτ))

]
.

(a) Using the parameters θ0 = π/8, ω = 0.5, α = 0.1, β = 2, and γ = 0.5, solve
equation (1) for θ(τ), 0 ≤ τ ≤ 250 using Matlab’s ode45 command. Experiment
with several different values of input tolerance for the ode45 command. From what
input tolerance (10? approximately) onward do you see very little variation in the
solution? You may use the error measure ‖θnumerical(τ)− θexact(τ)‖2/‖θexact(τ)‖2 to
answer this question

(b) We would like apply the RK4 method to equation (1) and solve for θ(τ). In order
to compute a stable step size for the RK4 method, first linearise equation (1) by
assuming small oscillations (sin θ ≈ θ). Then, in the resulting second order linear
ODE, use the substitutions z1 = θ, z2 = dθ/dτ to derive a system of first order
ODEs of the form dz/dτ = Az + b, where z =

[
z1 z2

]T
. What are the entries

of matrix A and vector b? Using the same parameters from the previous part,
compute a suitable step size for the RK4 method by computing the eigenvalues of
matrix A. You may slightly adjust the step size (conservatively) such that the end
time (τ = 250) is a multiple of it. Construct a RK4 solver and solve for θ(τ) using
the computed stable step size. Do you observe a stable solution? In order to see
this, make two figures: one containing a plot of the error |θnumerical(τ) − θexact(τ)|
for 0 ≤ τ ≤ 250 and the other containing a plot of

θ(τ)

θ0
w.r.t.

1

(θ0ω)

dθ

dτ
.
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If the solution is stable, you should see approximately a unit circle in the second
figure, since the exact solution θexact(τ) = θ0 sin(ωτ) satisfies

θexact(τ)
2 +

1

ω2

(
dθexact
dτ

)2

= θ20.

If you do not observe a stable solution, reduce the step size (say by halving it) and
check when you start observing a stable solution. Include an error plot and a phase
plot as explained above for this step size. How does this step size compare to the
estimate that was derived using linearisation? Compare to the step size taken by
ode45.

3. Chemical reactions: Chemical reactions often give rise to stiff systems of coupled rate
equations. Consider the following rate equations:

dC1

dt
= −k1C1 + k2C2C3,

dC2

dt
= k1C1 − k2C2C3 − 2k3C

2
2 ,

dC3

dt
= 2k3C

2
2 ,

where C1, C2 and C3 are the concentrations and k1, k2 and k3 are reaction rate constants
given as:

k1 = 0.04 k2 = 10.0 k3 = 1.5× 103.

Initially, C1(0) = 0.9, C2(0) = 0.1, and C3(0) = 0.
(a) What is the analytical steady state solution? Note that these equations should

conserve mass; that is, C1 + C2 + C3 = 1.
(b) To ascertain if the problem is stiff or not we consider linearising the system about

t = 0. Write down the 3 × 3 Jacobian matrix that results from this and compute
its eigenvalues. Is the problem stiff?

(c) Solve the given system to a steady state solution (t = 3000 represents steady state
in this problem) using:
(i) MATLAB’s ode45 solver.
(ii) MATLAB’s stiff solver ode23s.
Make two plots; one for each solver containing a log-log plot of the concentrations
Ci vs time. Compare and comment on the computational times.

4. Advection equation: Consider the advection equation ut + cux = 0, c > 0. We will
study the effect of different spatial discretisation schemes on the numerical solution by
studying the associated modified wavenumber.
(a) As in modified wavenumber analysis, assume a solution of the form u(x, t) =

φ(t)eikx. Substitute u(x, t) = φ(t)eikx in the advection equation, solve the resulting
ODE analytically and show that the solution at xj is:

u(xj, t) ≡ uj(t) = φ(0)eikxje−ickt. (2)
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(b) Consider a semi-discretisation of the advection equation:
∂uj

∂t
= −c

∂uj

∂x
, j = 1, 2, ..., (3)

where ∂/∂x is the spatial discretisation operator. Substitute u(x, t) = φ(t)eikx in
the semi-discrete equation (3), and show that the analytical solution of the semi-
discrete equation at xj is:

uj(t) = φ(0)eikxje−ick′t, (4)

where k′ is the modified wavenumber associated with the spatial discretisation
scheme. The difference between k and k′ will reveal how the choice of ∂/∂x af-
fects the phase and amplitude of the computed solution.

(c) For ∂/∂x, consider the central difference, first order upwind, and second order up-
wind schemes. For each scheme, show that the corresponding modified wavenumber
satisfies:

k′ = k + C1h
p + iC2h

q, (5)
where C1 and C2 are the coefficients of the leading error real and imaginary terms,
respectively. Identify C1, C2, p, and q in each case.

(d) For each choice of ∂/∂x above, replace k′ in equation (4) by the corresponding
expression in (5), and comment on whether the modified wavenumber k′ contributes
to both phase and amplitude errors.

(e) Let us confirm our analysis by applying the methods to the following problem:
∂u

∂t
+ c

∂u

∂x
= 0, 0 ≤ x ≤ 10, (6)

u(0, t) = 0, (7)

u(x, 0) =

{
cos2(πx)− cos(πx), 0 ≤ x ≤ 2

0, 2 < x ≤ 10.
(8)

Let c = 0.8. The exact solution is:

u(x, t) =

{
cos2(π(x− ct))− cos(π(x− ct)), 0 ≤ (x− ct) ≤ 2

0, 2 < otherwise.
(9)

Using h = 10/150 and δt = 1/240, solve the problem for 0 ≤ t ≤ 8 using explicit
Euler time stepping and central difference/first-order upwind/second-order upwind
for spatial discretisation.
Note that the explicit Euler with central difference is unstable for this problem.
Nevertheless, we can see the effect of the spatial discretisation for short time periods
before the instability shows up.
Make three figures, one for each method: each figure should contain two subplots
showing the numerical and exact solutions for t = 4 and t = 8. Comment on what
you observe.

(f) Can we reduce the numerical dispersion observed above by grid refinement? Check
this by repeating part (e) with h = 10/600 and δt = 1/960.
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