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OCEN 689

Fall 2019

Homework 3, due Tue Oct 15

1. Stability and accuracy: Consider the ordinary differential equation

y′ + (2 + 0.01t2)y = 0,

y(0) = 4,

Integrated from t = 0 to t = 10. The exact solution is

y(t) = 4e−2t−0.01t
3/3.

(a) Solve this equation using the following numerical schemes: i) explicit (forwards) Eu-
ler; ii) implicit (backwards) Euler; iii) the trapezium rule. Use h = 0.1, 0.2, 0.4, 1.0.
Plot all solutions on a graph and compute the L2 of the error as a function of h.

(b) Discuss the stability and accuracy of each scheme.

(c) For each scheme, compute the maximum h for a stable solution (over the given
domain) and discuss your estimate in terms of the results of part (a) (does your
estimate agree with the simulation?).

2. Stiff problems: In this problem, we will compare the implicit Euler and trapezium rule
methods for solving a stiff first order ODE. Consider the following differential equation:

dy

dt
= λ(−y + sin t), y(0) = 0,

where λ > 0 is a real constant. The exact solution of the ODE is:

y =

(
λ2

1 + λ2

)
sin t+

(
λ

1 + λ2

)
(e−λt − cos t).

Note that for large λ, the exact solution behaves like sin t.

(a) Consider the time interval [0, 10] and λ = 5000. Choose N steps, where N =
100, 300, 500. For each value of N , plot the numerical solutions and the exact
solution on the same figure. What can you say about the accuracy of the numerical
solutions? plot the L2 norm as a function of N .

(b) Repeat part (a) with y0 = 0.1. Is there a reason why you would prefer one numerical
method over the other in this case?
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3. Heat equation stability: We’ll use our code from the Laplace equation (assignment
2) to model our first PDE. Consider the unsteady heat equation

∂u(x, t)

∂t
= D

∂2u(x, t)

∂x2
,

u(x, 0) = 2x(1− x),

u(0, t) = 0,

u(1, t) = 0,

where (x, t) ∈ [0, 1]× [0, 1]. We want to construct a numerical solution of the form

uni = u(xi, tn), xi = ih, i = 0, 1, . . . , N, tn = nδt, n = 0, . . . ,M

(a) Set D = 1. In the interior, discretization in space gives for each ui the ODE

dui(t)

dt
=
D

h2
(ui−1(t)− 2ui(t) + ui+1(t))

This stencil must adjusted at the boundary to take into account the boundary
conditions. Storing all unknowns ui, i = 1, . . . , N − 1 into a vector ~u, we can write
all the ODEs together as the system of ODEs

d~u

dt
=
D

h2
A~u,

where A is a tridiagonal matrix. Find A.

(b) Consider solving the equation using h = 1/100, δt = αh2/2, α = 0.5. In MATLAB,
create a fully discretized scheme using (i) implicit and (ii) explicit Euler. Your
homework 2 code may be a nice start for your program. Are both solutions stable?
For both schemes, plot your results for

tn = 0, 0.01, 0.1, 0.2, 0.3, 0.4.

(c) Perform a convergence analysis in space: Compute the numerical solutions for
h = 1/5, 1/10, 1/20, 1/50, 1/100. Fix the ratio δt = h2

4
and take h = 1/100 to be

your reference solution. For t = 1, plot the norm of the error as a function of h in
logarithmic scale. What order of accuracy do you observe? Please plot two separate
graphs, one for each scheme.

(d) For h = 1/100, take increasing values of α = 0.5, 0.6, . . . , 1.1, 1.2. At what point
does explicit Euler become unstable? We’ll get back to this stability limit in class
in part III.

(e) For h = 1/100, take α = 10. Is implicit Euler still stable? What is the order of
accuracy?

(f) Now, for both implicit and explicit, set D = −1, h = 1/100, δt = h2/4. Solve for
t = [0, 0.1]. What happens? Explain why this behavior is expected.
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